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Highly-Sensitive MEMS Micro-Fluxgate
Magnetometer

Ziwei Wang , Ying Shen , Chong Lei, Jiazeng Wang, Shuxiang Zhao, Jiamin Chen ,
Zhaoqiang Chu, and Junqi Gao

Abstract— Fluxgate magnetometers have been widely
applied in many fields, such as magnetic anomaly detection,
e-compass,etc. In this work, a micro-fluxgatemagnetometer
based on the implementation of the MEMS technology is
proposed. The core of the fluxgate was fabricated by using
an amorphous Co-based magnetic material, which shows a
good degree of linearity below 0.5 Oe. Moreover, a mixed-
signal lock-in circuit was designed to drive and capture
signals. Magnetic noise density of such a device was limited
to the value of 500 pT/

√
Hz at 1 Hz, while the capability of

sensing a DC magnetic field of 6 nT was demonstrated,
which presents a good development prospect in the weak
signal detection domain.

Index Terms— Micro-fluxgate, lock-in circuit, weak mag-
netic detection.

I. INTRODUCTION

THROUGH the behavior research of nearly 50 kinds of ani-
mals including birds, turtles and sharks, it was found that

animals can navigate and locate by sensing the Earth’s mag-
netic field, which excites a great interest of developing novel
GPS based on geomagnetic field [1]–[3]. To date, several types
of magnetometers can be found on the market, such as super-
conducting quantum interference device (SQUID), optically-
pumped magnetometers, magnetoresistance (MR) sensors and
so on, which play a key role in the magnetic field detection
[4], [5].
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Although the conventional fluxgate sensors are widely used
for several magnetic detection applications, they possess many
problems, like large volume, high power consumption and high
fabrication cost due to their structural characteristics [6]. The
emergence of MEMS technology is anticipated to significantly
assist in overcoming these limitations [7], [8].

Therefore, the design of MEMS fluxgate sensors and the
optimization of the magnetic field detection capabilities have
been widely reported in the literature [9]–[12]. More specifi-
cally, it has been demonstrated that the demagnetization effect,
permeability and structural configuration play an important
role in the total sensing performance [13]–[15]. In addition,
temperature [4] and the peripheral electronic circuits [16]
also affect the performance of the fluxgate sensor. A three-
axis fluxgate sensor employs a special gimbaled construction
that exhibits high stability and low noise, which is suitable
for long-term geomagnetic vector field measurements [17].
By using the MEMS technology, different core materials and
core structures have been proposed by combining integration
technology [15], [18], melt spinning [6] and other technologies
[19]. Beyond that, the sensitivity and the linear range of the
fluxgate sensor can be also improved by optimizing the lock-in
circuit [20]–[23].

Although many breakthroughs have been reported, the
micro-fluxgate magnetometers have not been well developed
due to limitations of the lock-in circuit. Under this direction,
in this work, a micro-fluxgate magnetometer is proposed in
conjunction with a mixed-signal lock-in circuit, which shows
great detection properties. The development of such type
of portable magnetometer is quite promising for weak field
detection applications.

II. MICRO-FLUXGATE MAGNETOMETER DESIGN

A micro-fluxgate magnetometer was proposed to contain a
micro-fluxgate and a custom lock-in circuit. The fluxgate was
fabricated by a standard MEMS processing [24]. As far as the
lock-in circuit is concerned, it is a mixed-signal circuit con-
taining a digital signal generator and an analog demodulator.

A. Micro-Fluxgate Design
The active core of the MEMS fluxgate was made by using

an amorphous Co-based soft magnetic material (VITROVAC
6025Z). Fig. 1 shows the fabrication processing including
thick photoresist-based UV lithography, sputtering, electroplat-
ing of Cu film, dry and wet etching of excess materials, etc.
More details can be found in our previous work [18].

As is illustrated in Fig. 2 (a), this MEMS fluxgate sensor
contains a rectangular magnetic core, which is wrapped by
two pairs of driving coils to generate a high-frequency driving
magnetic field. In addition, a pick-up coil is integrated at the
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Fig. 1. Schematic illustration of the fabrication steps of the MEMS-based
fluxgate sensor. (a) Electroplating of the bottom coils; (b) electroplating of
the vias; (c) pasting of core; (d) polishing of polyimide; (e) electroplating
of the top coils and electrodes; and (f) polishing of polyimide.

Fig. 2. (a) Schematic diagram; and (b) photograph of MEMS fluxgate
sensor.

center of the magnetic core to collect the signals induced by
variations of magnetic flux.

Moreover, the rectangular magnetic core was 11.05 mm ×
2.35 mm in size and had a thickness of 15 μm to obtain
better performance. The long side width of the rectangular
core was 650 μm. In addition, the numbers of turns for the
driving coils and pick-up coils were 62 and 59, respectively,
whereas the packaging dimension of the micro-fluxgate was
around 12 mm × 7 mm, as is shown in Fig. 2 (b).

The property of the micro-fluxgate in response to the exter-
nal magnetic field was systematically characterized. During
the measurements, the device and a solenoid coil were placed
inside a magnetic shielding chamber to block the external
noise. The solenoid coil was powered by a current source
to apply a DC magnetic field along the sensitive axis of the
micro-fluxgate.

According to our previous work [18], optimized driving
frequency exists by considering the sensitivity, the noise
and the power consumption of a fluxgate system. In the
proposed design, the sensitivity of the micro-fluxgate can
be enhanced by initially increasing the driving frequency.
However, the response of the sensor is not consistent as the
driving frequency exceeds the value of 400 kHz, which is
caused by the manifestation of the nonlinear skin effect.
Meanwhile, the noise level was also improved under this
condition. Thus, a functional generator was used to excite
the driving coils at a frequency value of 400 kHz with an
amplitude of 60 mA. Moreover, only the second harmonic
signal was induced by pick-up coils, which is directly related
to the amplitude of the external magnetic field based on the
working principle of the fluxgate. Therefore, a pre-amplifier
(SR560) was used to amplify the second harmonic signal by
setting up a band pass filter around the value of 800 kHz.
The amplified signal was then monitored by an oscilloscope.
The measured result is depicted in Fig. 3, and the M-H curve
of the Co core was added as an insert graph.

From the extracted outcomes, it can be argued that the
micro-fluxgate shows a linear response to the external mag-
netic field at the range of ±1 Oe, which is considered satisfac-
tory for the majority of geomantic field detection applications.

B. Readout Circuit Design
The overall architecture of the specially designed lock-in

circuit is shown in Fig. 4. One of the most important parts

Fig. 3. Distribution of the output signal of the micro-fluxgate as a function
of the DC magnetic field. The inset graph depicts the M-H curve of the
core.

Fig. 4. Depiction of the functional block of the lock-in circuit.

of the proposed circuit is the high-frequency signal generator.
In this design, a digital circuit module based on AD 9959 was
also implemented. Benefitting from this signal generator, the
key parameters of the driving signal and reference signal
including the frequency, as well as the amplitude and phase,
can be continuously tuned by a program, which shows the
great advantage of the developed architecture over the analog
lock-in circuit with fixing electronic parameters. On the other
hand, the proposed circuit is more complicated and the power
consumption is relatively higher. However, the latter can be
further optimized. Based on the above-mentioned measure-
ments, the amplitude of the driving signal was set at the value
of 1 V with a frequency of 400 kHz, while the frequency of
the reference signal was set at 800 kHz.

On the other hand, an analog demodulator based on AD835
was utilized. By using this module, the induced signal from
the micro-fluxgate and the reference signal was multiplied.
The process can be expressed as follows:

Voutput = Vmicro− f luxgate × Vre f

= AB sin 2ω0t · sin (2ω0t + �ϕ)

= AB

2
[cos �ϕ − cos (4ω0t + �ϕ)] (1)

where Voutput represents the output signal through demodula-
tion process, A and B denote the amplitudes of the reference
signal and induced signal of the micro-fluxgate, respectively,
ω0 is the driving frequency, and �ϕ is the phase difference
between these two signals.

Clearly, the output signal is composed of a DC signal
and an AC signal, whereas is comprised of the following
component:4ω0. Next, a low pass filter was designed to obtain
the DC component by rejecting the high-frequency signal.

In this case, the relationship between the measured DC
magnetic field and the DC output is Vout = S × Hdc, where
S stands for the sensitivity in the unit of V/Oe.
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Fig. 5. (a) Output signal of the micro-fluxgate sensor as a function of
the DC magnetic field; and (b) equivalent magnetic noise SD.

III. RESULTS AND DISCUSSIONS

A. Sensitivity and Noise
Firstly, the sensitivity of the micro-fluxgate magnetometer

was characterized. During the test, the device was placed in the
center of a Helmholtz coil, which was powered by a current
source to generate a DC magnetic field along the sensitive axis
of the sensor. Because the coils of the sensor were quite small
and the distance between the sensor and Helmholtz coil was
large enough, the mutual inductance coupling effect can be
ignored. The amplitude of the magnetic field was monitored
by using a gauss meter. Finally, the output of the sensor was
monitored by a digital multimeter. The DC output voltage as a
function of the magnetic field is displayed in Fig. 5 (a), where
the scattering points represent the measured data. A linear
fitting was also performed, which is indicated by the solid
red line. As can be ascertained, a desirable linearity within the
range of −0.5 to 0.5 Oe was attained by the proposed fluxgate
sensing element. Clearly, the value of the sensitivity of the
micro-fluxgate magnetometer was determined to be 1.27 V/Oe.

Besides the sensitivity, another important parameter for
practical applications is the intrinsic noise, which was also
measured for the introduced micro-fluxgate magnetometer.
To eliminate the external magnetic interference, the magne-
tometer was placed inside the magnetically shielding chamber.
Moreover, the output of the unit was connected to a dynamic
signal analyzer (SR 785) to obtain the power spectral density.

By using SR 785, the voltage noise spectral density (SD)
can be directly obtained. To get the equivalent magnetic noise
SD, the following equation was used to convert the unit from
V/

√
Hz to T/

√
Hz:

MS D(T
/√

H z) = VS D(V/√
H z)

S(V/
Oe)

× 10−4 (2)

As can be observed from Fig. 5 (b), the noise at the low-
frequency range was dominated by 1/ f noise, as was expected.
Additionally, the noise was attenuated sharply above the value
of 10 Hz due to the low-pass filter. More specifically, the
magnetic noise SD at 1 Hz was 500 pT/

√
Hz.

B. Resolution
The DC magnetic field resolution of the micro-fluxgate

magnetometer was also measured. During the test, a small
number of H-coils and the device were placed inside the
chamber. A DC power source was used to drive the H-coils
for generating a tiny magnetic field. By controlling the source,
a magnetic field step with an amplitude of 6 nT was applied
to the sensor. By considering the geometry of the magnetic
core, its demagnetization factor was quite close to 0. Thus,

Fig. 6. Resolution of the micro-fluxgate magnetometer under the
application of small DC magnetic field variations.

TABLE I
PERFORMANCE COMPARISON OF THE DIFFERENT SENSORS

almost all of the external magnetic field was applied to the
sensor. As was expected, an output voltage step function of the
magnetometer could be detected, as is shown in Fig. 6. This
result clearly demonstrates that the designed micro-fluxgate
has an excellent detection ability of a 6 nT DC magnetic field.
Moreover, no hysteresis effects and good repeatability were
also captured by the sensor.

The performance of different types of MEMS-based mag-
netic sensors is summarized in Table I. Interestingly, the
proposed micro-fluxgate magnetometer presents an excellent
capability of detecting small DC magnetic fields compared to
the majority of the reported sensing elements. However, the
noise SD of this fluxgate sensor needs to be eliminated to
further improve its resolution.

IV. CONCLUSION

In this work, a compact fluxgate magnetometer was pro-
posed, which consisted of a micro-fluxgate and a lock-in cir-
cuit. The sensitivity and the magnetic noise SD of the proposed
sensor were 1.27 V/Oe and 500 pT/

√
Hz at 1 Hz, respectively.

With regard to the detection accuracy, the proposed sensor has
a high detection resolution of 6 nT, which stems from the high
sensitivity and low noise. Thus, the development of a micro-
fluxgate magnetometer by using MEMS technology offers
unique perspectives in the field of weak magnetic detection.
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