弛豫铁电单晶(Relaxor-PT)材料与水声换能器


压电材料能够实现电能与声能的相互转换,是水声换能器的核心组成部分,对换能器的整体性能起着决定性的作用。20世纪90年代以来,随着生长工艺的不断完善,以铌锌酸铅-钛酸铅[Pb(Zn1/3Nb2/3)O3–PbTiO3,(PZNPT)],铌镁酸铅-钛酸铅[Pb(Mg1/3Nb2/3)O3–PbTiO3,(PMNPT)],和铌铟镁酸铅-钛酸铅[Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3,(PIN–PMN–PT)]为代表的大尺寸弛豫铁电单晶生长制备逐渐成熟(图1),推动了换能器技术的飞速发展 [1] [2] [3]。

Relaxor-PT1

图1 (a) PZN-PT [4];(b) PMN-PT [5];(c) PIN-PMN-PT [6]

弛豫铁电单晶材料是一种由驰豫铁电体(Relaxor)和常规铁电体(例如钛酸铅PbTiO3, PT)构成的固溶体压电单晶,具备非对称钙钛矿晶体结构(图2),其性质与晶体组分、相位、切型和极化方向密切相关。随着PT含量的增加,弛豫铁电单晶材料将发生三方相(rhombohedral)→ 斜方相(orthorhombic)/单斜相(monoclinic)→ 四方相(tetragonal)的相变,如图3所示。弛豫铁电单晶材料的宏观对称性与极化方向密切相关,如图4所示,沿非极轴方向极化的晶体为多畴状态,被称为“工程畴结构”。按照极化后可能出现的电畴种类和数量,工程畴结构可表示为‘4R’、‘2R’、‘2T’等 [7]。

Relaxor-PT2

图2 弛豫铁电单晶钙钛矿结构 [8][9]

Relaxor-PT3

图3 弛豫铁电单晶相位图 [6]

Relaxor-PT4

图4 弛豫铁电单晶相结构、极化方向、畴结构与宏观对称性的关系 [5]

极化后的三方相弛豫铁电单晶具备优异的压电性质和应变能力,其压电常数(d33 > 2000 pC/N)与机电耦合系数(k33 > 0.9)远超传统锆钛酸铅[Pb(ZrxTi (1-x) )O3,PZT]多晶陶瓷材料(表1) [10] [11]。由弛豫铁电单晶材料驱动的水声换能器的频率带宽可高达PZT陶瓷的2~3倍,声源级可提高12dB。同时,弛豫铁电单晶材料具备更高的弹性顺度常数sijE),能够在相同频率下实现更加紧凑的换能器结构设计。上述特征使得弛豫铁电单晶适用于制备新一代小型化、大带宽、高转换效率、高发射电压响应、高声源级的高性能水声换能器。

表1. 磁电传感器性能总结

压电材料 d33(pC/N) d31(pC/N)   k33    k31    ε33T(ε)    S33E(pm2/N) 
PZT4 289 -123 0.70 0.30 1300 15.5
PZT8 225 -97 0.64 0.33 1000 13.5
PZT5A 374 -171 0.71 0.34 1700 18.8
PZT5H 593 -273 0.75 0.39 3400 20.7
PMN–33%PT 2820 -1335 0.96 0.59 8200 119.6
PZN–5.5%PT 2009 -979 0.92 0.49 5265 102.3
0.27PIN–0.40PMN–0.33PT 2742 -1331 0.95 0.65 7244 77.8

弛豫铁电单晶材料在水声技术领域的应用是从复合棒(纵向)换能器的研制开始的。美国宾夕法尼亚州立大学的Meyer等人研究了33-和32-模式的PMN-PT复合棒换能器,并与PZT8换能器进行了对比研究(图5)。其研究结果显示,在相同谐振频率下,由PMN-PT驱动的复合棒换能器的声源级与频率带宽分别较PZT8换能器提升4dB和2倍,并且其晶堆长度仅为后者的30% [12]。新加坡国立大学和Microfine Materials Technologies公司的Lim等人研制了32模式的PZN-PT复合棒换能器,能够以17W的输入功率实现大于180dB(re 1μPa/V.m)的声源级和两个倍频的频率带宽(图6) [13]。美国水下作战中心(Naval Undersea Warfare Center)的Robinson等人研制了单晶复合棒换能器阵列(图7),其频率带宽可达到PZT换能器阵列的3倍,声源级提高15dB [14]。

Relaxor-PT5

图5 33-模式的PMN-PT与PZT8复合棒换能器 [12]

Relaxor-PT6

图6 32-模式的PZN-PT复合棒换能器 [13]

Relaxor-PT7

图7 PMN-PT复合棒换能器阵列 [14]

参考文献

[1] L. C. Lim and K. K. Rajan, "High-homogeneity High-performance flux-grown Pb(Zn1/3Nb2/3)O3–(6–7)%PbTiO3 single crystals," Journal of Crystal Growth, vol. 271, no. 3-4, pp. 435-444, 2004.

[2] H. Luo, G. Xu, P. Wang and Z. Yin, "Growth and characterization of relaxor ferroelectric PMNT single crystals," Ferroelectrics, vol. 231, no. 1, pp. 97-102, 1999.

[3] J. Tian, P. Han, X. Huang, H. Pan, J. F. Carroll and D. A. Payne, "Improved stability for piezoelectric crystals grown in the lead indium niobate–lead magnesium niobate–lead titanate system," Applied Physics Letters, vol. 91, no. 22, p. 222903, 2007.

[4] “www.microfine-piezo.com,” [联机].

[5] S. Zhang, F. Li, X. Jiang, J. Kim and J. Luo, "Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – A review," Progress in Materials Science, vol. 68, pp. 1-66, 2015.

[6] E. Sun and W. Cao, "Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications," Progress in Materials Science, vol. 65, pp. 124-210, 2014.

[7] 李飞, 张树君, 李振荣 和 徐卓, “弛豫铁电单晶的研究进展—压电效应的起源研究,” 物理学进展, 卷 32, 编号 4, pp. 178-198, 2012.

[8] J. Zhu, W. Li, G. Xu, K. Jiang, Z. Hu and J. Chu, "A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra," Acta Materialia, vol. 59, no. 17, pp. 6684-6690, 2011.

[9] S. P. Alpay, J. Mantese, S. Trolier-McKinstry, Q. Zhang and R. W. Whatmore, "Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion," MRS Bulletin, vol. 39, no. 12, pp. 1099-1111, 2014.

[10] S.-E. Park and T. R. Shrout, "Characteristics of Relaxor-Based Piezoelectric Single Crystals for Ultrasonic Transducers," IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol. 44, no. 5, pp. 1140-1147, 1997.

[11] S.-E. Park and T. R. Shrout, "Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals," Journal of Applied Physics, vol. 82, no. 4, pp. 1804-11, 1998.

[12] R. J. Meyer, T. C. Montgomery and W. J. Hughes, "Tonpilz transducers designed using single crystal piezoelectrics," in Oceans Conference Record (IEEE), Mississippi, 2002.

[13] L. C. Lim, S. Zhang, Y. X. Xia, D. H. Lin and N. H. L. Goh, "Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystal and device development," Journal of Advanced Dielectrics, vol. 4, no. 1, p. 1350026, 2014.

[14] H. Robinson, "PiezoCrystal Transducers for Sonar Applications," in International Symposium on PiezoCrystals and Their Applications 2019, Lausanne, 2019.